

Clustering Based Optimization and Automation of
Utility Scale Solar Site Design

Kurt Rhee
EDF Renewables
North America

San Diego, USA
kurt.rhee@edf-re.com

Abstract— EDFR has developed a series of methods for quickly
drafting a set of utility scale photovoltaic plant layouts and
choosing an optimized plant design from that set. The automated
drafting methodology utilizes a standard clustering technique and
a novel cluster equalizing post-processing algorithm to solve a
problem in existing automated drafting software, which is that
existing techniques cannot assign dc power in the form of trackers
to inverters without human intervention. This step is crucial to
create end to end automation of a PV plant layout. Without it, it
is impossible to accurately determine the layout of dc wiring and
associated electrical equipment. The work nearly eliminates the
need for developer drafting of utility scale photovoltaic plant
layouts and provides a foundation for reducing levelized cost of
energy by allowing EDFR to select the most financially optimal
project design without investing large amounts of time creating
the feasibility space under which optimization can occur.
(Abstract)

Keywords—spectral clustering, layout, levelized cost of energy,
automation, optimization (key words)

I. INTRODUCTION
Over the years, competition for power purchase agreements

in the utility scale solar marketplace has increased, driving the
price of utility scale solar down to their lowest levels in history.
In light of this competition, it is becoming more and more
necessary to explore as many possible land scenarios and site
designs as possible in order to choose which combination of
land control and plant design ultimately gives the most
competitive PPA price.

Before the advent of the tool mentioned in this paper,

exploring land scenarios and site designs at EDFR was a
manual process involving a project developer responsible for
possible project boundaries and parcels, a GIS analyst
responsible for removing unsuitable land sections from within
the project boundary, and a Solar Engineer responsible for
creating a design, implementing it in AutoCAD, and creating
an energy assessment in PVSyst. Due to the time-cost
associated with implementing a design in AutoCAD, often
times, only one layout would be generated for each land
scenario and possible alternative layouts that might fit in the
same land scenario would be determined by ratio of dc/ac ratio
or sizing ratio (SR), ground coverage ratio (GCR) and module
efficiency.

The ratio method involves setting up inequalities of those
three factors which affect space constrained plant design and
solving for the desired variable. For example if an original
plant design is known, and a variant of that design is desired
with an increased sizing ratio with the same module efficiency,
then a new increased GCR could be solved for. There are
obvious problems with this model including the fact that it does
not take into account irregularities in the

𝐺𝐺𝐺𝐺𝐺𝐺 1
𝐺𝐺𝐺𝐺𝐺𝐺 2

 ×
𝑆𝑆𝑆𝑆 2
𝑆𝑆𝑆𝑆 1

 ×
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 1
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2

= 1

The financial model, consisting of capital expenditures,

operational expenditures and energy assessment among other
factors, when reading from this old process, could not then
contain information about layout specifics such as lengths of
DC cable required, lengths of AC cable, and there was no
guarantee that the optimal design was actually buildable due to
the ratio method being used to determine the land feasibility
space.

Along with the problem of generating many layouts in a

short period of time, solar engineers in charge of designing a
plant also face the possibly more interesting problem of which
design is most optimal, as for any given possible combination
of ground coverage ratio and sizing ratio there are are an infinite
amount of ways to place the a given design on a given land
parcel, with some initializations being more optimal than others
with many different ways to connect rack objects to inverters
and so on and so forth. The choice of most optimal plant design
also relies on the need for a similarly automated financial model
in order to process the amount of data created from all of the
possible plant designs. In terms of time commitment it is not
feasible for an engineer to devote many hours to designing a
solar plant in many different configurations in order to figure
out which of those configurations it the best. In practice, this
lack of time means that decisions around many plant level
design decisions are made by rules of thumb rather than by data
driven processes and models.

Many alternatives to AutoCAD exist which assist engineers

with automating parts of solar plant design. EDFR has explored

many of these options and found an impressive set of software,
each with the potential to save time in the design phase, but
what we did not find from any existing software at the time of
writing is one which could group horizontal single axis trackers
to inverters without human intervention. Without this step, we
found it would be too time consuming in existing software to
weigh the advantages and disadvantages of non-uniform land
areas which may increase the DC line cost or know exactly
which trackers correspond to which inverters and where those
inverters should sit within the project boundary. This is an
especially large issue when considering many different (100+)
sizing ratio’s and designs at once, as human intervention would
be required each time that trackers needed to be assigned to
inverters.

EDFR’s clustering approach addresses the design problem

listed above, and while not perfect, gives EDFR a headstart on
creating a feasibility space of possible solar designs for a given
land boundary and a framework for choosing a optimal design
from that space.

II. METHODOLOGY
Solving the generalized problem of fitting objects inside of

a given boundary, optimizing for number of objects has been
studied in the fields of computational geometry and operations
research for decades [1] and is considered NP-hard. The
generalized problem specified to the solar engineering
application is the fitting of racks inside of a buildable land
object. The buildable land can be defined as a set of polygons
which describes the areas feasible for laying down trackers that
lies within the boundary of land controlled by EDFR. For
example, all of the leased area of a project minus streams,
transmissions easements and flood zones may make up a
buildable land.

The general solar engineering problem can be broken down

into a a set of steps that approximate the global maximum while
also taking into account factors that affect the design such as
cable length, continuitiy of DC blocks, etc. In other words, this
paper will describe a set of algorithms that solve in polynomial
time and will not discuss a general solution. The program was
written in python using only open source libraries. The choice
to use open source libraries was mostly due to cost and
convenience. The relative merits of open source vs. closed
source software is beyond the scope of this paper.

1. Pre-Processing

As a given project boundary can contain many
discontiguous parcels and buildable areas, it is necessary to
divide each of these polygons into their own separate
optimization problem. It is also necessary to assign an
appropriate projection to convert spherical latitude and
longitude to a flat coordinate system. This can all be done in

python relatively easily via the open source package geopandas
[2].

2. Fill Buildable Land with Horizontal Single Axis

Trackers
After creating a polygon (rectangle) object which represents

the length and width of a standard tracker, the program then
finds the farthest west longitude and the farthest south latitude
point on the buildable polygon. Starting from the coordinate
that combines these two minimums, the program pastes these
tracker objects from west to east, south to north until it
surpasses the farthest north latitude point and farthest east
longitude point. While pasting these trackers, the program
considers the pitch between trackers and necessary roads. The
program then attempts n different starting positions and selects
whichever iteration gives the largest number of tracker objects.

At this point in the program there exists a buildable land

object and a set of tracker objects arranged in an array which
overlays the buildable land from its southwestern most corner
to the northeastern most corner. After this step is complete,
trackers that fall outside of or on the border of the buildable
land polygon are deleted so that only trackers with feasible
building locations remain.

3. Remove Trackers in Excess of specified DC/AC Ratio

The trackers placed by the program at this point represent
all possible tracker positions. Given that EDFR generally
designs solar plants so that each inverter has roughly the same
amount of DC capacity electrically tied to it, some of these
possible tracker positions will not be used. For example, if
there are 5 blocks that fit within a given boundary and each
block contains 100 trackers, but there are 543 possible tracker
positions, then 43 potential tracker positions would need to be
removed.

In order to remove DC capacity in excess of what is needed

to hit the desired DC/AC ratio for each inverter on the
buildable polygon, each tracker object is given a continuity
score from low to high with high numbers representing a high
likelihood that the tracker will be saved. The scores are
generated by first converting each tracker object into a point
object in a point cloud, and then creating separate adjacency
matrices in the x and y direction. The python library
networkx was instrumental in creating these adjacency
matrices [3]. Each neighbor in the x direction and each
neighbor in the y direction adds to the score. Additional
scoring rules are also added to account for undesirable shapes
in the resulting site design. In this way, the least useful
trackers per polygon are removed.

Fig. 1. (Top) Scoring of individual tracker points in the site design point
cloud. X and Y axes represent the coordinate plane, nnn represents the number
of nearest neighbors within the scoring system. (Bottom) Tracker objects that
are saved by the tool in black and tracker objects removed by the tool in red.

4. Use Clustering Algorithm to Find Possible Blocks

The most difficult portion of the solving tool is
determining out of all saved trackers, which ones should be
grouped into which AC blocks and in what fashion. In order
to complete this task, first each contiguous grouping of
trackers is separated from the rest to be optimized on its own.
This can be done by once again utilizing the point cloud of
tracker position. From the corresponding adjacency matrix
one can split the undirected graph into several disconnected
subgraphs in places where no adjacency is found. The
algorithm of splitting subgraphs via the spectrum of the graph
Laplacian is outside of the scope of this paper but is a well-
researched topic in the field of applied mathematics [4].

Each point cloud then is separated into k separate,

internally contiguous clusters based on how many blocks
could theoretically fit in the point cloud. For example, if there
are 1000 trackers on the buildable land and we plan to assign
200 trackers to a given block, then k = 5. Clustering
algorithms such as K Means clustering and Spectral clustering
which take the number of clusters as a parameter are useful in
this step. We at EDFR have found that spectral clustering
outperforms K means clustering because it allows for the
creation of non-convex cluster groups. We chose to utilize
scikit-learn’s spectral clustering algorithm for this first pass
grouping of trackers. [5]

Fig. 2. Example of an initial spectral clustering of one contiguous section of
block trackers

The problem with each of these clustering algorithms is

that the clusters produced by each algorithm do not produce
equal sized clusters. When clusters are not equal sized, the
program will assign too many trackers (DC capacity) to some
inverters while leaving others relatively sparse. In order to
equalize the number of points in each cluster point cloud it is
necessary to post-process the clustering algorithm output.

5. Post Process Clustering Algorithm Output
After creating clusters via Spectral clustering, an

adjacency matrix of clusters is generated. The adjacency
matrix contains information not only of which clusters are
contiguous with other clusters, but also the size of each
cluster. The algorithm for equalizing clusters involves
adjacency pathways between the largest and smallest clusters:

• Find the adjacency chain linking the largest “overfull”

cluster and the smallest cluster.
• Pass the number of trackers needed to equalize the

entire cluster group, from largest “overfull” cluster, to
adjacent clusters, to smallest cluster. Djikstra’s shortest
path algorithm is useful for finding efficient chains. [6]

• At each step, the adjacent cluster should gain
ownership of trackers from the previous cluster in the
chain based off tracker distance to cluster centroid.

• Cluster sizes and adjacencies are recomputed.
• Once every cluster has an equal number of trackers

assigned, the algorithm can stop.

Fig. 3. Example of an adjacency chain from pngwave.com. Overfull cluster
A donates tracker objects to overfull cluster B which donates to cluster D, E
and eventually F until F becomes exactly full.

6. Removing Unnecessary Blocks
Once the algorithm has looped through every

discontiguous polygon the program may have created more
clusters (blocks) than necessary. In some cases, it is simplest
to choose the farthest clusters from the substation and remove
them from consideration as these polygons often bear the
higher cost of additional wire quantities or losses in
transporting energy to the project substation. In other cases,
another strategy might be used to improve project economics.

Fig. 4. Example of a theoretical layout generated from the program in which
the amount of land available exceeds the amount of land needed to fit a
specified system.

7. Identifying Bill of Quantities
Now that the layout is complete, the quantities of several

capex and opex parameters can be calculated. For example,
the number of piles required per tracker, the distance of travel
for ac cable to the substation, the amount of dc cable needed,
etc. Once this is complete each design can be compared and
the most optimal design in can be chosen to be entered into the
competitive bid process.

III. RESULTS AND DISCUSSION

The resulting program, without optimizing for speed,
returns a design for moderately complex buildable land
polygon in approximately 20 minutes and can be parallelized
across multiple cores. In this way, EDFR can run many
possible designs in parallel with no human interaction and
minimum time commitment compared to the manual process
or even software assisted processes. In case manual changes
need to be made, deliverable files can be exported to .kml
format for viewing in Google Earth or exported into .dxf for
editing in AutoCAD.

IV. CONCLUSION
Determining which trackers are assigned to which blocks

plays a crucial role in the effectiveness of automatic site
design methods and is necessary when trying to design many
sites at scale. Overall, this clustering based approach to utility
scale solar power plant design fills some of the gaps within the
existing cadre of solar site design tools and increases the speed
at which EDFR can generate scenarios and compare their
relative advantages and disadvantages. We believe that it
represents an incremental step towards increasing our
competitiveness against natural gas and a major step in
reducing the amount of engineer time spent doing manual
design work.

ACKNOWLEDGMENTS
This research was supported by EDFR. We would like to

thank James Alfi and James Christopherson for the time and
ability to work on optimization topics. We would also like to
express our gratitude towards Cameron Nielsen, Marine Bila
and Angel Velasco for their helpful conversations on the topic
of designing utility scale photovoltaic power plants.

REFERENCES

[1] Wäscher, G.; Haußner, H.; Schumann, H. An Improved Typology of
Cutting and Packing Problems. European Journal of Operational Research
Volume 183, Issue 3, 1109-1130

[2] Kelsey Jordahl; Joris Van den Bossche; Jacob Wasserman; James
McBride; Martin Fleischmann; Jeffrey Gerard; Jeff Tratner; Matthew
Perry; Carson Farmer; Geir Arne Hjelle; Sean Gillies; Micah Cochran;
Matt Bartos; Lucas Culbertson; Nick Eubank; Aleksey Bilogur; maxalbert
(2020). Geopandas. https://geopandas.org/

[3] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring
network structure, dynamics, and function using NetworkX”, in
Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel
Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA
USA), pp. 11–15, Aug 2008

[4] Chung, Fan (1997) [1992]. Spectral Graph Theory. American
Mathematical Society. ISBN 978-0821803158.

[5] Pedregosa et al. Scikit-learn: Machine Learning in Python., JMLR 12, pp.
2825-2830, 2011.

[6] E. W. Dijkstra. (1959) A Note on Two Problems in Connection with
Graphs. Numerische Mathematik, 1. 269-271..

https://geopandas.org/

	I. Introduction
	II. Methodology
	III. Results and Discussion
	IV. Conclusion
	Acknowledgments
	References

