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Abstract— EDFR has developed a series of methods for quickly 
drafting a set of utility scale photovoltaic plant layouts and 
choosing an optimized plant design from that set.  The automated 
drafting methodology utilizes a standard clustering technique and 
a novel cluster equalizing post-processing algorithm to solve a 
problem in existing automated drafting software, which is that 
existing techniques cannot assign dc power in the form of trackers 
to inverters without human intervention.  This step is crucial to 
create end to end automation of a PV plant layout.  Without it, it 
is impossible to accurately determine the layout of dc wiring and 
associated electrical equipment.  The work nearly eliminates the 
need for developer drafting of utility scale photovoltaic plant 
layouts and provides a foundation for reducing levelized cost of 
energy by allowing EDFR to select the most financially optimal 
project design without investing large amounts of time creating 
the feasibility space under which optimization can occur.  
(Abstract)  
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I. INTRODUCTION  
Over the years, competition for power purchase agreements  

in the utility scale solar marketplace has increased, driving the 
price of utility scale solar down to their lowest levels in history.  
In light of this competition, it is becoming more and more 
necessary to explore as many possible land scenarios and site 
designs as possible in order to choose which combination of 
land control and plant design ultimately gives the most 
competitive PPA price.   

 
Before the advent of the tool mentioned in this paper, 

exploring land scenarios and site designs at EDFR was a 
manual process involving a project developer responsible for 
possible project boundaries and parcels, a GIS analyst 
responsible for removing unsuitable land sections from within 
the project boundary, and a Solar Engineer responsible for 
creating a design, implementing it in AutoCAD, and creating 
an energy assessment in PVSyst.  Due to the time-cost 
associated with implementing a design in AutoCAD, often 
times, only one layout would be generated for each land 
scenario and possible alternative layouts that might fit in the 
same land scenario would be determined by ratio of dc/ac ratio 
or sizing ratio (SR), ground coverage ratio (GCR) and module 
efficiency.   

 

The ratio method involves setting up inequalities of those 
three factors which affect space constrained plant design and 
solving for the desired variable.  For example if an original 
plant design is known, and a variant of that design is desired 
with an increased sizing ratio with the same module efficiency, 
then a new increased GCR could be solved for.  There are 
obvious problems with this model including the fact that it does 
not take into account irregularities in the  
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The financial model, consisting of capital expenditures, 

operational expenditures and energy assessment among other 
factors, when reading from this old process, could not then 
contain information about layout specifics such as lengths of 
DC cable required, lengths of AC cable, and there was no 
guarantee that the optimal design was actually buildable due to 
the ratio method being used to determine the land feasibility 
space. 

 
Along with the problem of generating many layouts in a 

short period of time, solar engineers in charge of designing a 
plant also face the possibly more interesting problem of which 
design is most optimal, as for any given possible combination 
of ground coverage ratio and sizing ratio there are are an infinite 
amount of ways to place the a given design on a given land 
parcel, with some initializations being more optimal than others 
with many different ways to connect rack objects to inverters 
and so on and so forth.  The choice of most optimal plant design 
also relies on the need for a similarly automated financial model 
in order to process the amount of data created from all of the 
possible plant designs.  In terms of time commitment it is not 
feasible for an engineer to devote many hours to designing a 
solar plant in many different configurations in order to figure 
out which of those configurations it the best.  In practice, this 
lack of time means that decisions around many plant level 
design decisions are made by rules of thumb rather than by data 
driven processes and models. 

 
Many alternatives to AutoCAD exist which assist engineers 

with automating parts of solar plant design.  EDFR has explored 



many of these options and found an impressive set of software, 
each with the potential to save time in the design phase, but 
what we did not find from any existing software at the time of 
writing is one which could group horizontal single axis trackers 
to inverters without human intervention.  Without this step, we 
found it would be too time consuming in existing software to 
weigh the advantages and disadvantages of non-uniform land 
areas which may increase the DC line cost or know exactly 
which trackers correspond to which inverters and where those 
inverters should sit within the project boundary.  This is an 
especially large issue when considering many different (100+) 
sizing ratio’s and designs at once, as human intervention would 
be required each time that trackers needed to be assigned to 
inverters. 

 
EDFR’s clustering approach addresses the design problem 

listed above, and while not perfect, gives EDFR a headstart on 
creating a feasibility space of possible solar designs for a given 
land boundary and a framework for choosing a optimal design 
from that space. 

 
 

II. METHODOLOGY 
Solving the generalized problem of fitting objects inside of 

a given boundary, optimizing for number of objects has been 
studied in the fields of computational geometry and operations 
research for decades [1] and is considered NP-hard.  The 
generalized problem specified to the solar engineering 
application is the fitting of racks inside of a buildable land 
object.  The buildable land can be defined as a set of polygons 
which describes the areas feasible for laying down trackers that 
lies within the boundary of land controlled by EDFR.  For 
example, all of the leased area of a project minus streams, 
transmissions easements and flood zones may make up a 
buildable land.   

 
The general solar engineering problem can be broken down 

into a a set of steps that approximate the global maximum while 
also taking into account factors that affect the design such as 
cable length, continuitiy of DC blocks, etc.  In other words, this 
paper will describe a set of algorithms that solve in polynomial 
time and will not discuss a general solution.  The program was 
written in python using only open source libraries.  The choice 
to use open source libraries was mostly due to cost and 
convenience.  The relative merits of open source vs. closed 
source software is beyond the scope of this paper. 

 
1. Pre-Processing 

As a given project boundary can contain many 
discontiguous parcels and buildable areas, it is necessary to 
divide each of these polygons into their own separate 
optimization problem.  It is also necessary to assign an 
appropriate projection to convert spherical latitude and 
longitude to a flat coordinate system.  This can all be done in 

python relatively easily via the open source package geopandas 
[2].   

 
2. Fill Buildable Land with Horizontal Single Axis 

Trackers 
After creating a polygon (rectangle) object which represents 

the length and width of a standard tracker, the program then 
finds the farthest west longitude and the farthest south latitude 
point on the buildable polygon.  Starting from the coordinate 
that combines these two minimums, the program pastes these 
tracker objects from west to east, south to north until it 
surpasses the farthest north latitude point and farthest east 
longitude point.  While pasting these trackers, the program 
considers the pitch between trackers and necessary roads.  The 
program then attempts n different starting positions and selects 
whichever iteration gives the largest number of tracker objects.  

 
At this point in the program there exists a buildable land 

object and a set of tracker objects arranged in an array which 
overlays the buildable land from its southwestern most corner 
to the northeastern most corner. After this step is complete, 
trackers that fall outside of or on the border of the buildable 
land polygon are deleted so that only trackers with feasible 
building locations remain. 

 
3. Remove Trackers in Excess of specified DC/AC Ratio 

The trackers placed by the program at this point represent 
all possible tracker positions.  Given that EDFR generally 
designs solar plants so that each inverter has roughly the same 
amount of DC capacity electrically tied to it, some of these 
possible tracker positions will not be used.  For example, if 
there are 5 blocks that fit within a given boundary and each 
block contains 100 trackers, but there are 543 possible tracker 
positions, then 43 potential tracker positions would need to be 
removed. 

 
In order to remove DC capacity in excess of what is needed 

to hit the desired DC/AC ratio for each inverter on the 
buildable polygon, each tracker object is given a continuity 
score from low to high with high numbers representing a high 
likelihood that the tracker will be saved.  The scores are 
generated by first converting each tracker object into a point 
object in a point cloud, and then creating separate adjacency 
matrices in the x and y direction.   The python library 
networkx was instrumental in creating these adjacency 
matrices [3].  Each neighbor in the x direction and each 
neighbor in the y direction adds to the score.  Additional 
scoring rules are also added to account for undesirable shapes 
in the resulting site design.  In this way, the least useful 
trackers per polygon are removed. 

 



 
Fig. 1. (Top)  Scoring of individual tracker points in the site design point 
cloud.  X and Y axes represent the coordinate plane, nnn represents the number 
of nearest neighbors within the scoring system.  (Bottom) Tracker objects that 
are saved by the tool in black and tracker objects removed by the tool in red. 

 
4. Use Clustering Algorithm to Find Possible Blocks 

The most difficult portion of the solving tool is 
determining out of all saved trackers, which ones should be 
grouped into which AC blocks and in what fashion.  In order 
to complete this task, first each contiguous grouping of 
trackers is separated from the rest to be optimized on its own.  
This can be done by once again utilizing the point cloud of 
tracker position.  From the corresponding adjacency matrix 
one can split the undirected graph into several disconnected 
subgraphs in places where no adjacency is found.  The 
algorithm of splitting subgraphs via the spectrum of the graph 
Laplacian is outside of the scope of this paper but is a well-
researched topic in the field of applied mathematics [4].   

 
Each point cloud then is separated into k separate, 

internally contiguous clusters based on how many blocks 
could theoretically fit in the point cloud.  For example, if there 
are 1000 trackers on the buildable land and we plan to assign 
200 trackers to a given block, then k = 5.  Clustering 
algorithms such as K Means clustering and Spectral clustering 
which take the number of clusters as a parameter are useful in 
this step.  We at EDFR have found that spectral clustering 
outperforms K means clustering because it allows for the 
creation of non-convex cluster groups.  We chose to utilize 
scikit-learn’s spectral clustering algorithm for this first pass 
grouping of trackers. [5] 

 

 
Fig. 2. Example of an initial spectral clustering of one contiguous section of 
block trackers 

 
The problem with each of these clustering algorithms is 

that the clusters produced by each algorithm do not produce 
equal sized clusters.  When clusters are not equal sized, the 
program will assign too many trackers (DC capacity) to some 
inverters while leaving others relatively sparse.  In order to 
equalize the number of points in each cluster point cloud it is 
necessary to post-process the clustering algorithm output. 

 
5. Post Process Clustering Algorithm Output 
After creating clusters via Spectral clustering, an 

adjacency matrix of clusters is generated.  The adjacency 
matrix contains information not only of which clusters are 
contiguous with other clusters, but also the size of each 
cluster.  The algorithm for equalizing clusters involves 
adjacency pathways between the largest and smallest clusters: 

 
• Find the adjacency chain linking the largest “overfull” 

cluster and the smallest cluster. 
• Pass the number of trackers needed to equalize the 

entire cluster group, from largest “overfull” cluster, to 
adjacent clusters, to smallest cluster.  Djikstra’s shortest 
path algorithm is useful for finding efficient chains. [6] 

• At each step, the adjacent cluster should gain 
ownership of trackers from the previous cluster in the 
chain based off tracker distance to cluster centroid. 

• Cluster sizes and adjacencies are recomputed. 
• Once every cluster has an equal number of trackers 

assigned, the algorithm can stop. 
 

 

 



 
Fig. 3. Example of an adjacency chain from pngwave.com.  Overfull cluster 
A donates tracker objects to overfull cluster B which donates to cluster D, E 
and eventually F until F becomes exactly full. 

6. Removing Unnecessary Blocks 
Once the algorithm has looped through every 

discontiguous polygon the program may have created more 
clusters (blocks) than necessary.  In some cases, it is simplest 
to choose the farthest clusters from the substation and remove 
them from consideration as these polygons often bear the 
higher cost of additional wire quantities or losses in 
transporting energy to the project substation.  In other cases, 
another strategy might be used to improve project economics. 

 
Fig. 4. Example of a theoretical layout generated from the program in which 
the amount of land available exceeds the amount of land needed to fit a 
specified system. 

7. Identifying Bill of Quantities 
Now that the layout is complete, the quantities of several 

capex and opex parameters can be calculated.  For example, 
the number of piles required per tracker, the distance of travel 
for ac cable to the substation, the amount of dc cable needed, 
etc.  Once this is complete each design can be compared and 
the most optimal design in can be chosen to be entered into the 
competitive bid process. 
 

III. RESULTS AND DISCUSSION 
 

The resulting program, without optimizing for speed, 
returns a design for moderately complex buildable land 
polygon in approximately 20 minutes and can be parallelized 
across multiple cores.  In this way, EDFR can run many 
possible designs in parallel with no human interaction and 
minimum time commitment compared to the manual process 
or even software assisted processes.  In case manual changes 
need to be made, deliverable files can be exported to .kml 
format for viewing in Google Earth or exported into .dxf for 
editing in AutoCAD. 

 

IV. CONCLUSION 
Determining which trackers are assigned to which blocks 

plays a crucial role in the effectiveness of automatic site 
design methods and is necessary when trying to design many 
sites at scale.  Overall, this clustering based approach to utility 
scale solar power plant design fills some of the gaps within the 
existing cadre of solar site design tools and increases the speed 
at which EDFR can generate scenarios and compare their 
relative advantages and disadvantages.  We believe that it 
represents an incremental step towards increasing our 
competitiveness against natural gas and a major step in 
reducing the amount of engineer time spent doing manual 
design work.   
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